澳洲幸运5官方开奖结果体彩网

What Assumptions Are Made When Conducting a T-Test?

Team of operations research analysts
Ryan McVay / Stone / Getty Images

T-tests🦹 are commonly used in statistics and econometrics to establish that the values of two outcomes or variables are different from one another.

The common assumptions made when doing a t-test include thos🃏e regarding the scale of measurement, random sampling, normality of data distribution, adequacy of sample size, and equality 𒁏of variance in standard deviation.

Key Takeaways

  • A t-test is a statistic method used to determine if there is a significant difference between the means of two groups based on a sample of data.
  • The test relies on a set of assumptions for it to be interpreted properly and with validity.
  • Among these assumptions, the data must be randomly sampled from the population of interest and the data variables must follow a normal distribution.

The T-Test

The t-test was developed by a chemist working for the Guinness Brewing Company as a simple way to measure the consistent quality of stout. It waꦯs further developed and adapted, and now refers to any test of a statistical hypothesis in which the statistic being tested for is expected to correspond to a t-distribution if the null hypothesis is supported.

A t-test is an analysis of two population means through the use of statistical examination; a t-test with two samples is commonly used with small sampl♎e sizes, testing the difference between the samples when the variances of two normal distributions are not known.

澳洲幸运5官方开奖结果体彩网:T-distribution is basically any continuous probability distribution that arises from an estimation of the mean of a normally distributed population using a small sample size and an unknown standard deviation for the population. The 澳洲幸运5官方开奖结果体彩网:null hypothesis is t🥃he default assumption that no relationship exists between two different measured phen💝omena.

T-Test Assumptions

  1. The first assumption made regarding t-tests concerns the scale of measurement. The assumption for a t-test is that the scale of measurement applied to the data collected follows a continuous or ordinal scale, such as the scores for an IQ test.
  2. The second assumption made is that of a 澳洲幸运5官方开奖结果体彩网:simple random sample, that the data is collected from a representative, randomly selected portion of the total population.
  3. The third assumption is the data, when plotted, results in a normal distribution, bell-shaped distribution curve. When a normal distribution is assumed, one can specify a level of probability (alpha level, level of significance, p) as a criterion for acceptance. In most cases, a 5% value can be assumed.
  4. The fourth assumption is a reasonably large sample size is used. A larger sample size means the distribution of results should approach a normal bell-shaped curve.
  5. The final assumption is homogeneity of variance. Homogeneous, or equal, variance exists when the standard deviations of samples are approximately equal.

What is the Difference Between a T-Test and a Z-Test?

A T-Test is often used when the sample size is small and the populatio♓n standard deviation is unknown, while a Z-Test is used with larger sample sizes and a known population standard deviation, or variance.

Can You Conduct a T-Test With More Than Two Groups?

No, you cannot use a T-♋Test for more than two groups as ℱthe test can only compare two means.

How Do You Interpret a T-Test Result?

If the p-value, or the level of significance, from the T-test is less than 0.05, then the result is said to be statistically significant, which means there might be a difference between the means of the two groups. If the p-value is greater than 0.05, then the result𒆙 is not statistically ♐significant.

The Bottom Line

Though the T-Test is a va🌳luable tool in statistics, numerous assumptions must be made before conducting one in order for it🌞 to be interpreted properly and with validity.

Article Sources
Investopedia requires writers to use primary sources to support their work. These include white papers, government data, original reporting, and interviews with industry experts. We also reference original research from other reputable publishers where appropriate. You can learn more about the standards we follow in producing accurate, unbiased content in our editorial policy.
  1. National Library of Medicine, National Center for Biotechnology Information. "."

Open a New Bank Account
The offers that appear in this table are from partnerships from which Investopedia receives compensation. This compensation may impact how and where listings appear. Investopedia does not include all offers available in the marketplace.

Related Articles