澳洲幸运5官方开奖结果体彩网

What Is APY and How Is It Calculated?

Definition

The annual percentage yield (APY) is the interest rate earned on an investment i💯n one y𝓡ear, including compounding interest.

What Is the Annual Percentage Yield (APY)?

The annual percentage yield (APY) is the interest rate earned annually (including compounding interest) on an investment in one year.. A higher APY is better, as your return will be higher. You can compare APYs at different financial institutions to ensure you're opening an account with the highest possible return.

Key Takeaways

  • APY is the actual rate of return that will be earned in one year if the interest is compounded.
  • Compound interest is added periodically to the total invested, increasing the balance.
  • The more often interest is compounded, the higher the APY will be.
  • APY is similar to the annual percentage rate (APR), but APR is typically used in the context of loans.
  • The APY on checking, savings, or certificate of deposit holdings will vary across products and may have a variable or fixed rate.
Annual Percentage Yield (APY)

Investopedia / Julie Bang

Formula and Calculation of Annual Percentage Yield 🦩(APY🐈)

APY standardizes the rate of return. It does this by stating the real percentage of growth that will be earned in compound interest, assuming that the money is deposited for one year. The formula for calculating APY is:

APY = ( 1 + r n )n 1 where: r = Nominal rate n = Number of compounding periods \begin{aligned}&\text{APY}=\bigg(1+\frac{r}{n}\bigg)^n-1\\&\textbf{where:}\\&r=\text{Nominal rate}\\&n=\text{Number of compounding periods}\end{aligned} APY=(1+nr)n1where:r=Nominal raten=Number of compounding periods

What APY Can Tell You

Any investment is ultimately judged by its rate of return, whether it's a 澳洲幸运5官方开奖结果体彩网:certificate of deposit (CD), a share of stock, or a government ♈bond. The rate of return is simply the percentage of growth in an investment over a specific period, us𒆙ually one year.

However, rates of return can be difficult to compare across different investments🅰 if they have different compounding periods. One may compound daily, while another compounds quarterly or bi🌳annually.

Comparing rates of return by simply stating the percentage value of each over one year gives an inaccurate result, as it ignores the effects of 澳洲幸运5官方开奖结果体彩网:compounding interest♔. It is critical to know how often that compounding occurs, since the more often a deposit compounds, the faster the investment grows.

This is due to the fact that every time interest compounds, the amount is added to the principal balance, and future interest payments are calculated on that larger principal amount.

Comparing the APY on Two Investments

Suppose you are considering whether to invest in a one-year zero-coupon bond that pays 6% upon maturity or a high-yield 澳洲幸运5官方开奖结果体彩网:money market account that also pays a 6% r𒊎ate, but with monthly compounding.

At first glance, the yields appear equal because they are both stated as 6%. But when the effects of compounding are included, the money market investment actually yields a higher APY: (1 + .005)12 - 1 = 0.06168 = 6.17% APY.

Important

Comparing two investments by their simple interest rates doesn't work, as it ignores the effects of compounding interest and how often that compounding occurs.

APY vs. APR

APY is similar to the annual percentage rate (APR) used for loans. The APR reflects the effective percentage that the borrower will pay over a year in interest and fees for the loan. APY and APR are both standardized meas♎ures of interest rates expressedꦐ as an annualized percentage rate.

However, APY takes into account compound interest while APR does not. Furthermore, the equation for APY does not incorporate account fees, only compounding periods. That's an important consideration for an investor, who must consider any fees that will be subtracted from an investment's overall return.

Example of APY

If you deposited𝓰 $100 for one year at 5% interest and your deposit was compounded quarterly, at the end of the year, you would have $10ꦉ5.09. If you had been paid simple interest, you would have had $105.

The APY would be  ( 1 + .05 4 )4 1 = .05095 = 5.095 % . \begin{aligned}\text{The APY would be } \bigg(1+\frac{.05}{4}\bigg) ^4 - 1 = .05095 = 5.095\%.\end{aligned} The APY would be (1+4.05)41=.05095=5.095%.

It pays 5% a year interest compounded quarterly, and that adds up to 5.095%. That's not too dramatic. However, if you left that $100 for four🐲 ye🐻ars and it was being compounded quarterly, your initial deposit would have grown to $121.99. Without compounding, it would have been $120.

X = D ( 1 + r n ) ( n y ) = $ 100 ( 1 + .05 4 )16 = $ 100 ( 1.21989 ) = $ 121.99 where: X = Final amount D = Initial deposit r = Nominal rate n = Number of compounding periods per year y = Number of years \begin{aligned}X&= D\bigg(1+\frac{r}{n}\bigg)^{(ny)}\\&=\$100\bigg(1+\frac{.05}{4}\bigg)^{16}\\&=\$100(1.21989)\\&=\$121.99\\&\textbf{where:}\\&X=\text{Final amount}\\&D=\text{Initial deposit}\\&r=\text{Nominal rate}\\&n=\text{Number of compounding periods per year}\\&y=\text{Number of years}\end{aligned} X=D(1+nr)(ny)=$100(1+4.05)16=$100(1.21989)=$121.99where:X=Final amountD=Initial depositr=Nominal raten=Number of compounding perio🌳ds peওr yeary=Number of years

How Compound Interest Works

The premise of APY is rooted in the concept of compounding. Compound interest is the financial mechanism that allows investment returns to earn returns of🍨 their own.

Imagine investing $1,000 at 6% compounded monthly. At the start of your investment, you have $1,000. After one month, your investment will have earned one month's worth of interest at 6%. Your investment will now be worth $1,005 ($1,000 * (1 + .06/12)). At this point, we have not yet seen compounding interest.

After the second month, your investment will have earned a🔯 second month of interest at 6%. However, this interest is earned on both your initial investment as well as your $5 interest earned last month😼.

Therefore, your return this month will be greater than last month because your investment basis will be higher. Your investment will now be worth $1,010.03 ($1,005 * (1 + .06/12)). Notice that the interest earned this second month is $5.03, which is different from the $5.00 from last month.

After the third month, your investment will earn interest on the $1,000, the $5.00 earned from the first month, and the $5.03 earned from the second month. This demonstrates the concept of compound interest: the monthly amount earned will continually increase as long as the APY doesn't decrease and the 澳洲幸运5官方开奖结果体彩网:investment principal is not reduced.

Fast Fact

Banks in the U.S. are required to include the APY when they advertise their interest-bearing accounts. That tells potential customers exactly how much money a deposit will earn if it is deposited for 12 months.

Variable APY vs. Fixed APY

Savings or checking accounts may have either a variable or fixed APY. A variable APY is one that fluctuates and changes with macroeconomic conditions, while a fixed APY does not change (or changes much less ꦜfrequently).

One type of APY isn't necessarily better than the other. While locking into a fixed APY sounds appealing, it could also mean missing out on higher rates when the Federal Reserve is increasing rates and APYs rise each month.

Most savings, money market, and 澳洲幸运5官方开奖结果体彩网:checking accounts have variable APYs, although some promotional bank accounts or bank account bonuses may have a higher fixe🍸d APY up to a specific level of deposits. For example, a bank may rew🔯ard 5% APY on the first $500 deposited, then pay 1% APY on all other deposits.

APY and Risk

Generally, investors are typically awarded higher yields when they take on greater risk or agree to make sacrifices. The same can be said for the APY of checking and savings accounts, as well as 澳洲幸运5官方开奖结果体彩网:certificates of deposit.

When a consumer holds money in a checking account, they're asking to have their money on demand to pay for expenses. At any time, they may need to buy groceries or pay other expenses, drawing from their account. For this reason, checking accounts often have the lowest APY because there is no risk or sacrifice for the consumer.

When a consumer holds money in a savings account, they may not have an immediate need for it. Savings accounts typically have higher APYs than checking accounts because consumers generally tend to leave money in them longer, allowing the🧸 bank to use it to make loans and earn interest on it also.

In addition, when consumers hold a certificate of deposit, they agree to sacrifice liquidity and access to funds in return for a higher APY. They can't use or spend the money locked in a CD without paying a penalty. The APY on a CD is often the highest as the consumer is being rewarded for sacrificing immediate access to their funds.

What Is APY and How Does It Work?

APY is the▨ annual percentage yield that reflects compounding on interest. It reflects the actual interest rate you earn on an investment because it considers the interest earned on your initial investment. Consider an example where the $100 investment yields 5% compounded quarterly. During the first quarter, you earn interest on the $100. However, during the second quarter, you earn interest on the $100 as well as the interest earned in the first q🅠uarter.

What Is a Good APY Rate?

APY rates fluctuate often, and a good rate at one time may not be a good rate later. Generally, when the Federal Reserve raises interest rates, the annual percentage yield (APY) on savings accounts tends to increase. Therefore, APY rates on savings accounts are usually better when monetary policy is tight or tightening. In addition, there are often low-cost, 澳洲幸运5官方开奖结果体彩网:high-yield savings accounts that consistently deliver competitive APYs.

How Is APY Calculated?

APY standardizes the rate of return. It does this by stating the real percentage of growth that will be earned in compound interest, assuming that the money is deposited for one year. The formula for calculating APY is (1 + r/n)ny, where r is the period rate, n is the number of compounding periods, and y is the number of years.

How Can APY Assist an Investor?

Any investment is ultimately judged by its rate of return, whether it's a certificate of deposit, a share of stock, or a government bond. APY allows an investor to compare different returns for different investments on an apples-to-apples basis, allowing them to make a more informed decision.

What Is the Difference Between APY and APR?

APY calculates the rate ear🌳ned in one year if the interest is compounded, providing a more accurate representation of the actual rate of return. APR includes any fees or additional costs associated with the transaction, but it does not account for the compounding of interest within a specific year. Rather, it is a simple interest rate.

The Bottom Line

APY is the actual rate of return you will earn on an investment or bank account. Unlike simple interest calculations, APY takes into account the compounding effect of prior interest earned, generating future returns. For this reason, APY will often be higher than simple interest, especially if the account compounds frequently.

Article Sources
Investopedia requires writers to use primary sources to support their work. These include white papers, government data, original reporting, and interviews with industry experts. We also reference original research from other reputable publishers where appropriate. You can learn more about the standards we follow in producing accurate, unbiased content in our editorial policy.
  1. Consumer Financial Protection Bureau. "."

  2. Federal Deposit Insurance Corporation. ""

  3. Consumer Financial Protection Bureau. "."

Take the Next Step to Invest
The offers that appear in this table are from partnerships from which Investopedia receives compensation. This compensation may impact how and where listings appear. Investopedia does not include all offers available in the marketplace.

Related Articles